
RECORDS

RECORDS WITHIN RECORDS

There is nothing to prevent us from placing records inside of
records (a field within a record):

Date_Type definesa record

 day, month, year isoftype num

Endrecord

Student_Type definesa record

 name isoftype string

 gpa isoftype num

 birth_day isoftype Date_Type

 graduation_day isoftype Date_Type

endrecord

This name is now

a type which can

be used anywhere

a type such as

“Num” can be

used.

What are these called?

Types

LB

POINTERS AND RECORDS

current

current^

Bob

123456789

static dynamic

POINTERS AND RECORDS

current

current^.name <- “Bob”

Bob

123456789

static dynamic

POINTERS AND RECORDS

current

current^.SSN <- 123456789

Bob

123456789

static dynamic

WHAT’S THE BIG DEAL

 We already knew about static data

 Now we see we can allocate dynamic data but

 Each piece of dynamic data seems to need a

pointer variable and pointers seem to be static

 So how can this give me flexibility

LB

QUESTIONS?

INTRODUCTION TO LINKED LISTS

PROPERTIES OF LISTS

 We must maintain a list of data

 Sometimes we want to use only a little memory:

 Sometimes we need to use more memory

 Declaring variables in the standard way won’t
work here because we don’t know how many
variables to declare

 We need a way to allocate and de-allocate data
dynamically (i.e., on the fly)

LINKED LISTS “LIVE” IN THE HEAP

•The heap is memory not used by the stack

•Dynamic variables live in the heap

•We need a pointer variable to access our list in the heap

Main this_var list_head 4

12 18 21 23

LINKED LISTS

With pointers, we can form a “chain” of data

structures:

List_Node definesa Record

 data isoftype Num

 next isoftype Ptr toa List_Node

endrecord //List_Node

4 17 42

LINKED LIST RECORD TEMPLATE

<Type Name> definesa record

 data isoftype <type>

 next isoftype ptr toa <Type Name>

endrecord

Example:

 Char_Node definesa record

 data isoftype char

 next isoftype ptr toa Char_Node

 endrecord

CREATING A LINKED LIST NODE

Node definesa record

 data isoftype num

 next isoftype ptr toa Node

endrecord

And a pointer to a Node record:

current isoftype ptr toa Node

current <- new(Node)

POINTERS AND LINKED LISTS

current

current^

current^.next

current^.data

static dynamic

ACCESSING THE DATA FIELD OF A NODE

current

current^.data <- 42

current^.next <- NIL

42

static dynamic

PROPER DATA ABSTRACTION

Vs.

COMPLEX DATA RECORDS AND LISTS

The examples so far have shown a single num

variable as node data, but in reality there are

usually more, as in:

Node_Rec_Type definesa record

 this_data isoftype Num

 that_data isoftype Char

 other_data isoftype Some_Rec_Type

 next isoftype Ptr toa Node_Rec_Type

endrecord // Node_Rec_Type

LB

A BETTER APPROACH WITH HIGHER

ABSTRACTION

One should separate the data from the structure
that holds the data, as in:

Node_Data_Type definesa Record

 this_data isoftype Num

 that_data isoftype Char

 other_data isoftype Some_Rec_Type

endrecord // Node_Data_Type

Node_Record_Type definesa Record

 data isoftype Node_Data_Type

 next isoftype Ptr toa Node_Rec_Type

endrecord // Node_Record_Type

CREATING A POINTER TO THE HEAP

list_head isoftype ptr toa List_Node

Notice that list_head is not initialized and points to

“garbage.”

Main list_head

?

CREATING A NEW NODE IN THE LIST

list_head <- new(List_Node)

Main list_head

?

FILLING IN THE DATA FIELD

list_head^.data <- 42

The ^ operator follows the pointer into the heap.

Main list_head

? 42

CREATING A SECOND NODE

list_head^.data <- 42

list_head^.next <- new(List_Node)

The “.” operator accesses a field of the record.

Main list_head

42 ?

CLEANLY TERMINATING THE LINKED LIST

list_head^.next^.data <- 91

list_head^.next^.next <- NIL

We terminate linked lists “cleanly” using NIL.

Main list_head

42 91

DELETING BY MOVING THE POINTER

If there is nothing pointing to an area of memory in

the heap, it is automatically deleted.

list_head <- list_head^.next

Main list_head

42 91

